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ABSTRACT

In this paper a new subset selection rule for selecting a subset containing
the least probable multinomial cell is defined. The rule is shown to be
minimax and admissible in the class of rules which have a preassigned proba-
bility of at least P* of selecting the least probable cell provided that P*
is sufficiently large. The loss used is the mmber of non-best cells selected.
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A Minimax and Admissible Subset Selection Rule
for the Least Probable Multinomial Cell

1. INTRODUCTION. In this paper, subset selection problems for the multinomial

distribution are considered. In these problems, the aim is to select a non-
empty subset of the cells which contains the cell with the lowest cell probability.
Having restricted attention to rulec which have a high probability of including

the least probable cell, the goal is to find a rule which effectively excludes

the cells associated with the larger cell probebilities. This leads to the
use of the number of non-best celis selected as a measure of the loss to the
experimenter. In this paper, a subset selection rule is presented which is
minimax and admissible for this problem. The rule is simple and easy to imple-
ment and in some cases is similar to a rule proposed and studied by Nagel (1970).
Alam and Thompson (1972) considered the problem of selecting the single
least probabie cell. The subset selection problem for the multinomial distribu-
tica has besn previously considered by Gupta and Nagel (1967), Nagel (1970),
Panchapakesan (1971) and Gupta and Huang (1975). Berger (1979b) described a

class of minirax sultinomial selection riles. Minimax selection rules for

mul¢inomial and ccher disiributions have been considered by Berger (1979a) and
Bjcrnstad (1978). Berger and Cupta (1979) found minimax and admissible subset
selection rules for location paraneters but <he class of selection rules
considered was restrictcd. To this author's knowledge, this is the first
time minimax and adrissible subset selecticn rules have been derived for the
multinomial or any other problem.

Section 2 contains the necessary notation for a formulation of the problem.

The selection rule is defined in Section 3. The minimaxity and admissibility of

- the rule is proven in Section 4.




2. NOTATION AND FORMULATICON. Let = (Xl, ceey Xk) be a multinomial random

vector with J¥ j=1 X; = n. X and y will denote vectors in the sample space of X.
i=1 Pj = 1. The
ordered cell probabilities will be denoted by P17 %+ Py The goal of

Let P By «oes pk) be the unknown cell probabilities with Z

the experimenter is to selcct a cubset of the cells including the best cell,

the cell associated with Py A correct selection, CS, is the selection of any

subset which contains the best czil.

The actiou space A for a subset celecticn preoblem is the Zk - 1 non-empty
subsets of {1, 2, ..., k}. In generzl a selection rule is,for each X a
probability distribution cn 4. Put &s describad in Berger (1979a), for our
purposes a selection rule can be defined by the individual selecticn probabilities,

oG = (‘pl (X)s «ees by £)). where v i(;g) is the probability of including the ith

ccll having observed X = X. A nccessary and sufficient coendition on y to
insure the ckistence of czlection rule which always selects a non-empty subset
(o1 vLi(‘é) > 1 fer all x.

Let P* be « prezssigned fixed nurber such that 1/k < P* < 1. As is
traditionas, ths <iy selection rules to be considered are those which satisfy
the P*-cenditicn, vir., mfp P_(CS|y) > P*. 'The set of all selection rules
which satisfy the P*-coaditicn will be denoted by Dpa -

The lcss to be used hsrein is the mumber of non-best cells selected, S'.

A non-best cell is any cz11 for vhich ?; " e Thus the risk for a selection

rule y at a parameter point p, i.e., th2 axpected mmber of non-best cells
selected, can be calculated from the indivi‘ual selection probabilities by
a ,(S'[v) = Im(ﬁ) #3100 where a(p) = {ie {1, 2, ..., Kk py > Pry;}- This
defmnim of the loss and risk differs from the definition used elsewhere (see
e.g. Berger (1979a)) if P17 = P33 but it 2~rees with the usual definition if

Fi1y < Pr2)
easily checked that the minimax and admissible selection rule

and has the alvautage of being per-utatisnally invariant. It is




PSR

to be derived herein is also minimax and admissible for the definition of S'
used in Berger (1979a).

The subset selection problem as defined above is invariant under the group
of permutations on the sample space. See Ferguson (1967) for the general
definitions of invariance. If a selection rule is invariant under the group of
permutations then these two relationships are true about the individual
selection probabilities: (1) For every i ¢ {2, ..., k} and every X, ¥;(X) = v QY
where 1% Y% and yj = xj for j not equal to 1 or i; and (2) For every
ielly «ovs Kl wi(g) = wi(x) where X; =y and (yl, oy Viopr Yiepr co yk)
is a permutation of (xl, cees X515 Xy cees x.k). Permutationally invariant
selection rules will be of interest since, by Theorem 2, page 156 of Ferguson
(1967), a selection rule is admissible in the class of all selection rules if it
is admissible in the class of invariant selection rules.

Finally, some results involving Schur functions and stochastic majorization
will be used in the subsequent sections. All the notations, definitions and
conventions will be as presented in Proschan and Sethuraman (1977) and Nevius,
Proschan and Sethuraman (1977) and will not be repeated herein.

3. A CLASS OF SELECTION RULES. In this section a class of selection rules is

defined. The form of these 1 as is examined and the fact that these rules
satisfy the P*-conditicn for certain values of P* is proven.
Selection rules of the following form will be examined. Let 0 <c <1

be a fixed constant. Define the individual selection probabilities by
X

1 XI;BIC' T oM

(3.1) w:(§) = {a i =

0 >




wherethemmbersO_<_c<1md0<M_<_k-lareclnsmsotlntEnoo‘i‘(p-P"
where Bo = (1/k, ..., 1/k). The w; defined by (3.1) satisfy the invariance
property (1) of Section 2 so in the future all the discussion will be in terms
of "”1.' Now further constraints will be placed on ¢ which will further limit

the form of wi. For each X» define A(x) = {x: X =N and (xz, ‘i x.k) is a
permutation of (yz, Ay yk)}.

Lemma 3.1. There exists ¢ > 0 such that, if 1 -e<c)<('1, then
1 1(1<torx1-t:am'lzl:;_2<:J <M
(3.2) V) =fa X AQ)

0 otherwise
for some t ¢ {0, ..., n} and some Y.

Proof. Let f(c, X) = {l;_zcxj . Clearly f(c, x) = £(c, Y) for every c if

X € A(y). The lemma will be true if the following two facts are true for every
1-e<c<l: (i) £(c, X) # £(c, y) if x ¢ AQY) and (ii) £(c, ¥) > £(c, y) if
X; > ¥,. To see (i), fix x and y with x ¢ A(y). Then f(c, x) and f(c, ) are
two different polynomials in c. Hence f(c, ;5) = f(c, x) for only a finite number
of values for c. But £(1, ;5) =k-1=£Q, x). So there exists ¢ > 0 such
that if 1 - ¢ < c <1 then f(c, x) # £(c, Y). By considering all such pairs

X and y (there are only a finite number of such pairs in the sample space)

and taking the minimm e obtained, an ¢ > 0 which works for any pair x and y

is obtained. To see (ii), note that

a%f(c’ ‘JIC']. = z:]i('zxj aqn - xl <n- yl = Z;:'Zyj = ag-f(Cp x)|0'1 .

BT




Since f(c, x) and f(c, x) are continuous functions of c, inequality (i)
implies either f(c, §) > f(c, x) for every 1 - ¢ < ¢ < 1 or f(c, §) < f(c, x)
for every 1 - € < c < 1. The inequality of the derivatives implies
fc, ) > £, - |l

Note that every value of c satisfying 1l - e < C < 1 gives rise to the same
ordering of the x's. That is if the x's in Bxe sample space were to be ordered
according to the value of the function Zlg_'zc:J , the same ordering would result
from every c satisfyingl - € < c < 1. Thus (3.2) defines only one selection
rule, not different selection rules for different values of c.

Henceforth it will be assumed that c has been chosen so that o; has the
form given in (3.2).

To insure that the selection rule y* will always select at least one cell,
the individual selection probabilities must satisfy J5., ¥3G) > 1 for all X.
This will be true if P* > I’Bo()(1 < n/k) + PBO(§ = (n/k, ..., n/k))/k. This
lower bound converges to 1/2 as n + =. Thus the rule y* cannot be used for
very small P*. In practice P* is usually chosen to be near one so this is not
a serious restriction. In the following theorem the range of possible P* values

is restricted even further in order to ensure that y* satisfies the p*-condition.

Theorem 3.1. Let P* _>_PR ()(1 < n(k - 1)/k). Then
0

inf P (CS|¥%) = inf, ., B, V(D = B, w0 = P*

3 - o B R
where P = {B: P =Py ]}.

Proof. The first equality is true by the invariance of y*. The last equality

is true by the definition of y*. The last equality is true by the definition

of y*. Only the middle equality remains to be proven.

A———




Let pe P,. Definep'byp'=...=p‘ =p, and p' =1 - (k - 1)p,. First
~ 1 1 k-1" F1 k 1
it will be shown that E Vi (X) ,w* (}\(') Since ¢ > 0, c® is a convex function

X.
of x. Thus Z =25 1 js a Sschur convex function of (xz, s xk). Thus
w{(t, Xps vens xk) is a Schur concave function of (xz, A i xk) on the set
{(xz, s xk): 21:=2xk =n - t}. The conditional distribution of (Xz, bt Xk)
given X1 = t is a multinomial distribution. So, by Application 4.2a of
Nevius, Proschan and Sethuraman (1977), Ep(vj»f()()l)(.l = t) is a Schur concave

N
function of (p,, ..., py) for fixed p;. Thus Ep(wi‘q)lxl =t) > Ep,(wi‘()‘g)lxl =
since (pé, LI pf() majorizes (pZ’ Whep pk). 0; the other hand,
PR()(1 <t)= P}\)‘,(x1 < t) and P}\)‘(X1 =t) = Pp,()(l = t) since these probabilities
depend only on 12 and P = pi. Hence

ERw;()Q . pR(Xl <t) + BR(w;(;g)lxl - t)PR(xl = t)
2Pyl <) ER-("’I(X”’& - t)Pg'(xl = t)
=B wiQo.

piQ

It remains to show that, for any p of the form (p, ..., p, q) where
q=1-(k-1)pandp<1l/k; E w*(@ > E w;(%) By examining the derivative

n-
of p (1 - (k- 1)p) " with respect to p, it is easily verified that this

expression is a non-decreasing function of p on 0 < p < 1/k if X < n/k. If
P s P ()(1 <n(k - 1)/k) then t > n - n/k. Thus w‘l'(;\c‘) <1 mphes X < n/k.
This further implies that if wi(x) <1 then P q X) =n! p a-k-1p

ny

(xp!eex ) <0l (1/K) ka - « - naxy */(xl X! =P (15 X). Let

¥

T= %: wi(;\(') = 0}. Then




-
/

ng‘l'(;g) =1 - 27651' RQS -0 - m)z;é eAGy) p(x X)

21 L Ry &0 O g 7, &R

= E, 0.

Po

This verifies the middle eq.2lity. ||

The result of Nevius, Proschan and Sethuraman used in the above proof
was also proved by Rinott (1973).

Further values of P* for which y* will satisfy the P* condition are given
by Theorem 3.2.

Theozom 3.2. Let P* = PR (X, < t) for some t. Then infRP(CSIuo*) = p*
0

Proof. 1E Pt P}eo(x1 < t), then "‘1'(?9 =1 if x; <t and "’f(ﬁ) = ( if x 2t
The cquality follows from the MLR property of the binomial distribution. ||

The values of P* specified by Theorem 3.2 correspond to certain simple
rules, investigated by Nagel (1970), for selecting the most probable cell.

Henceforth it will be assumed that P* was chosen so that the condition of
either Theorem 3.1 or 3.2 is satisfied. The restriction used in the proof of
Theorem 3.1 that P (X = x) < P (,X ;é) for all X with v *(x) < 1 is rather strong.
The fact that * sat1.,f1es the P*-condltlon for some smaller values of P*, as
given by Theorem 3.2, leads the author to believe that y* satisfies the

P*-condition for a wider range of values. But this has not been proven.

4. MINIMAXITY AND ADMISSIBILITY OF THE SELECTION RULE ¢*. In this section the

minimaxity and admissibility of the selection rule y*, defined by (3.1) and
(3.2), in the class of rules Dpa with respect to the loss S' is proven. First

the minimaxity of ¢* will be investigated.




Theorem 4.1. IfP*>P (X1<n/2) - (k-l)P Qg-(n/z n/Z, 0, ... D)2

then ¢* is minimax w1th respect to S'.

Remark 4.1. If n is an odd number, the second term in this lower bound for

P* is zero. The only case in which this lower bound is larger (more restrictive)

than the bound given in Theorem 3.1 is if k = 2 and n is even. In this case,
viGo > 1.

The following two lemmas will be used in the proof of Theorems 4.1 and

this bound is the same as that given in Section 3 to ensure 21=1

4.2.

Lemma 4.1. (a) If ¢y e Dpa then Ep x,i(%) >P forl<ick.
0
(b) The minimax value for S' is (']‘c' - 1)P%,
(c) If y is minimax then J5_E v, (0 = (k - 1)P*.
, i=2 Py 1
4N

Procf. These facts follow from the observation that Eple) is a continuous
N
function of P for any selection rule and Py can be considered as the limit of
n
a sequence of parameter points for which P; = P13 < P2y See Theorem 3.1

of Berger (1979a) for a similar proof with more details. ||

Lerma 4.2. If P* > P (Xl n/2) -k - 1)P20(X = (n/2, n/2, 0, ..., 0))/2
then S(&) 21;1 (&) is a Schur concave function of X on the sample space.

Proof. The inequality assumed for P* and the definition (3.2) of y* implies
either t >n/2ort =n/2, y= (n/2, n/2, 0, ..., 0) and a > %. (Recall t

is defined to be an integer). Suppose x majorizes Y. Without loss of

generality it will be assumed that x; > X, ... 2 X and y; 2 ¥, 2 «e0 2 Vye
Let f(c, X) = 21.2

X




Case 1: y1<tory1=tandf(c,y)<M. 'I'henS(y)skg_S(;é).
T N N

Case 2: y; =t= n/2,£f(c, X) =M. Theny e An/2, n/2, 0, ..., 0). Since x
n
majorizes X’ either Xe A(n/2, n/2, 0, ..., 0) or X, > t. In the first case
S(X) = S(&) and in the second case S(y) = (k - 2) + 2a > (k - 1) = S(R‘,) since
n

a > k.

k e
n = 21_1 Yy B 2V 2 n/2 implies
= = = *
<k S0 TX v =k -1 21_ {e3R
If x; > ¥ps q.*(x) >0 = *(;\c'). If X, = ¥p» then (xz, Wk k) majorizes

Case 3: y, =t >n/2. Since 21=1 i

xi<n/2<tandyi<n/2<tfor23

(=0

i=2

(s -=e» yk) w* is a Schur concave function of (X, ..., xk) for fixed X

(2c in the proof of Theorcm 3.1) so \Pf (y) > \pf (x). In either case, S(y) > S(x)-
Case 4: y1>t As in Case 3, x; <n/2<tandy <n/2<tfor2<'\i<kso

S =k -1=50). I

Proof of Theorem 4.1. S(;\c') is a Schur concave function of X by Lemma 4.2. By

Application 4.2a of Nevius, Proschan and Sethuraman (1977), E SQS) 211(,1 pwl(p

is a Schur concave function of p and thus is maximized at Ro- By the defuutlon

of v*, EROSQQ= ‘ leg. Assume Pj = Py
(k - 1)P* = kP* - P*
> BSQO - P*
k-
E S(X) - P _(CS[v*
p() R( [v*)
N

=ESW - § w*(k)

k '
3 2;;;%*2@ > L0 = 519
ify v

By Lemma 4.1b, * is minimax with respect to s'. ||




Remark 4.2: The proof of Theorem 4.1 also shows that y* is minimax with

respect to the loss S, the mmber of populations selected, which was investi-
gated by Berger (1979a), Bjernstad (1972) and many others. See these two
papers for further references. But no admissibility claims can be made for
y* for the loss S.

Now the admissibility of y* will be proved.

Theorem 4.2: y* is admissible with respect to S'.

Proof. By Theorem 2, page 156 of Ferguson (1967), it suffices to prove that

y* is admissible in the class of perrutation invariant rules in Dpa Let

g- (P, 95 ..., q) where (k - 1)q+p=1and 1 - ¢ < p/q <1 for the ¢ specified
by Lemma 3.1. For any invariant rule y

k x,
E (S'|v) = 21.22 v (X)n!jgltij/xj!)

R

k

- wl(x)Zlgztn (plllx ')(pxl/x D1 (p; J/x D]
Jﬂ
A

X.
R TVRTCRREND

By Lemma 4.1a, every permutation invariant rule in Dp, satisfies E wl (5) >
By the Neymann-Pearson Lemma (See Lehmann (1959)) any such md1v1dua1
selection probability, y;, which minimizes ER(S' |v) must satisfy
X,
1 Q" pm) Lo

¥ @ =
0 >
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where C is a constant and the factorials have cancelled from both sides of

the inequalities. This is equivalent to

X.
1 FEclay

(4.1) ¥ ()
0 >

where c =p/qand M = C/(gk)™. (4.1) is the form given by (3.1) and, since
1-¢<p/q<1, (4.1) is of the form (3.2) be Lemma 3.1. Furthermore, by
Lemma 3.1 the set of x in the sample space for which lefazcxi =M is A(x) for
some x Since ¥y (;5) is invariant, ¥ (;5) is constant on A(x). So wl(gg) must
be exactly of the form (3.2). (The Neyman-Pearson Lemma would have allowed
different values of a for different x\"s in A(X)). Thus wi corresponds to the
unique permutation invariant rule in Dpa which minimizes Ep(S' ¢). Thus ¢* is
admissible among the permutation invariant rules in Dps. IT

The resuits of Sections 3 and 4 show that for fixed values of k and n,
if P* is sufficiently large, y* is minimax and admissible with respect to S'.
This result could be extended if y* could be shown to satisfy the P*-condition
for smaller values of P* since the bound on P* in Theorem 3.1 is usually the
largest. More work is needed to find minimax and admissible selection rules
for smaller values of P*.

The problem of sclecting a subset containing the most probable cell
also leads to rules of the form (3.1) where now ¢ > 1. But the author has been

unable to verify the P*-condition except in certain special cases corresponding

to Theorem 3.2. This problem too requires further investigation.
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